ASIA and ICT: Education in Asia

In the past 20 years, Asian economies have seen significant gains in many areas. Although recessions have occurred, the outcome of a rapid transformation to compete in a globalized market continues to influence education. This process of globalization driven by policies of economic liberalization and technological breakthroughs in ICT, is reinforcing the significant impact that ICT has in reshaping the economic landscape into a knowledge-based economy. Globalization can be defined as the ongoing economic, technological, social, and political integration of the world. There are several dimensions to this dynamic process, including the increased internationalization of economic markets as reflected, for example, in trade and financial capital flows as well as in Educational development.

The rapid growth of Asia in the last three decades, particularly of the newly industrialized economies (NIEs) of Hong Kong, China; Republic of Korea (Korea); Singapore; and Taipei, as well as the economies of Southeast Asia, has been widely documented. More affluent Asian countries that grew rapidly in the 1980s and 1990s now have low levels of unemployment and are experiencing a growing need for a variety of skills that are in short supply among the domestic labor force. While the movement of unskilled labor has received wide publicity, there is also a strong flow of immigrants in some skilled and professional occupations. The main recipients of this new wave of migration have been Japan; Singapore; and Taipei, China; and more recently, Malaysia and Thailand. Japan and Taipei, have attracted labor from all over Asia while Singapore has experienced a large volume of migration from Malaysia and Indonesia (ABD, 2000).

It appears that the differences in demographic patterns have generally contributed to more rapid development in East Asia and South Asia (UNESCO, 2000). In addition to gaps between growth rates, key distinctions remain in the incidence of poverty and in patterns of employment. For example, traditional non-mechanized agriculture still dominates some economies, while technology- and knowledge-intensive industries are rapidly expanding in others. Variations in demographic transitions within Asia as a whole have also had important consequences in terms of society’s development, including progress in education.
Select countries in Asia well exceed world averages on many development indicators, including life expectancy, per capita gross domestic product or gross national product (GDP or GNP), and literacy. Other countries, particularly those in South Asia, such as Afghanistan, Bhutan, India, Nepal, and Pakistan, have not fared so well. Haq (1997) refers to South Asia as “the poorest region, the most illiterate, the most malnourished region, the least gender sensitive region, the region with highest human deprivation, and the most militarized region in the world”.

The rural poor need to be educated and organized to make demands on the administrative system (Bhatnagar, 2000). In all these areas information technology can play only a supportive role. In design and implementation of applications, field officials must get a sense of involvement and sense of ownership. In discussing the likely impact of ICT on development a caveat is in order. Some significant successes in transforming of rural communities have had nothing to do with ICT. This movement has enlisted urban professional volunteers to give one or two days of their time to work amongst rural people. The movement focused on slow change through repeated contact with rural population focusing on self-help and awakening. Volunteers reach out to rural people asking them to join the movement.

However, over the past few years, governments have increased education expenditure as a share of current government expenditure, with a slight increase in capital education expenditure as a percentage of total education expenditure. Public expenditure on education as a share of GNP ranges from less than 2 percent to approximately 8 percent. Like all education indicators, expenditure figures tell, at best, an incomplete story (ABD, 2000).

Major changes, often encouraged by international agencies and economics, are taking place in education governance. To varying degrees, at different speeds, and following a range of paths, education responsibilities are being devolved alongside, in some cases, decision-making authority. The expectations are that decentralization and localization of education services will relieve some of the burden on central bureaucracies. Among the key potential benefits are an increased resource base and higher levels of participation by parents, the community, and sometimes the private sector in the education system, resulting in greater effectiveness and efficiency. Moreover, allowing parents and community members direct involvement in decisions affecting education is likely to ensure the overall relevance of the educational content. This general trend may have profound effects on many facets of the education system, e.g., the actors involved in education decisions; strategies for change; opportunities for localizing curricula;
operational meaning given to such concepts as quality, efficiency, and relevance in education; and how education services are financed.

Decentralization may have an equally profound effect on the direction and content of the roles of international agencies. Effective education systems have at least five characteristics: sound education governance and management, high-quality schools and training programs, continuing attention to equity, availability of multiple sources of finance, and well-developed descriptive statistics and indicators. Among the three levels of education, higher education will show the greatest percentage of growth from 1990 to 2010, especially in low- and middle-income Asian countries recommending to:

- Further develop tertiary education that is responsive to other parts of the system in terms of standards, admission criteria, and curricula.
- Encourage, through privatization, multiple delivery modes and multiple channels of financing for an increasingly heterogeneous and flexible range of institutions.
- Develop a special concern for, and priority to, women’s access and treatment in higher education.
- Promote continuing, adult, and lifelong learning opportunities that respond to (possibly evolving) individual needs.

Recently, with the advent and spread of the Internet and the new economy, it is jobs that are beginning to move in search of labor rather than the reverse. Using advanced telecommunications technology, many tasks can be easily and efficiently outsourced to developing countries. Some examples include data entry, software programming and development, Internet website development, computer help lines, and some accounting functions. Globalization impacts the institutional framework in both developing and industrial countries; it is changing the way in which governments view their developmental role in society. In addition, the growth of ICT, computers, and the Internet has transformed many aspects of Asian life in a positive dimension but has also resulted in other aspects that have been detriment to the society as a whole. Because of the enormous gains in productivity in computers, the costs of ICT have fallen significantly making it now more affordable for primary and secondary
schools as well as for institutions of higher learning such as Open Universities in Asia and more specifically the students that they serve.

Information and Communications Technology (ICT)

ICT influences and greatly facilitates communication, collaboration, and competition and has enhanced the productivity of education and research. It has also increased the pathways for the diffusion of technology across many sectors of society including education. The fusion of ICT with higher learning can enhance the future effectiveness and efficacy of education depending in large part on the ability to utilize and leverage ICT and on the established educational foundation (Bates, 2000).

The information and communications technology (ICT) revolution has forever changed the way the countries of the Asia and the Pacific region plan and manage their economies. Increasing productivity, ensuring competitiveness, and maximizing utilization of and benefit from the vastly increased access to knowledge require investment in ICT, and in education and training related to ICT (Dede, 1996). The rising demand for training in ICT demonstrates recognition of its importance on the part of students and workers. Appropriate ICT has particular potential for enriching and improving the quality and relevance of education provided to the poor. Application of ICT can provide resources for teachers in poor schools, and flexible learning schedules for out-of-school youth. But in most countries of the region, basic education, nonformal education, upper secondary education, higher education, and skills training continue to make minimal use of ICT, either to improve quality or to increase access.

The impact of the ICT revolution on educational performance is difficult to quantify. Measuring the relative societal impact from ICT, computers, and the Internet is complicated due to their interrelatedness and because longitudinal studies and detailed analysis have been lacking. However, the growth of the Internet may, by itself, create a more equal basis for program development. As countries in Asia consider the adoption and/or expansion of Information and Communication Technologies (ICT) to meet educational demands, a concern for instructional quality control and for the development of necessary student and professor support systems to ensure programmatic integrity requires concerted attention. E-learning and other forms of distance learning using emerging technologies creates diverse means to meet student demands.
It then becomes the responsibility of university professors and administrators to identify and apply appropriate curricula design, development, support, and evaluation measures to ensure that their academic and research programs demonstrate an effective transition to an e-learning environment (Churton, 2001, 2002).

Factors that influence effective e-learning programs focus on learner’s needs, curricula requirements, and the technological and human constraints faced by professors and by learners themselves. Recently, with the advent and spread of the Internet and the new economy, it is jobs that are beginning to move in search of labor rather than the reverse. Using advanced telecommunications technology, many tasks can be easily and efficiently outsourced to developing countries. Some examples include data entry, software programming and development, Internet website development, computer help lines, and some accounting functions. Globalization impacts the institutional framework in both developing and industrial countries; it is changing the way in which governments view their developmental role in society. In addition, the growth of ICT, computers, and the Internet has transformed many aspects of Asian life in a positive dimension but has also resulted in other aspects that have been detriment to the society as a whole. Because of the enormous gains in productivity in computers, the costs of ICT have fallen significantly making it now more affordable for primary and secondary schools as well as for institutions of higher learning such as Open Universities in Asia and more specifically the students that they serve.

Asia’s common environmental and human conditions include large and rapidly expanding populations. Many citizens continue to live in rural and remote areas but still have a significant demand for education. Many countries lack the capacity and resources for conventional educational systems to meet the demand resulting in an inequitable representation of people who have been marginalized as a result of limited resources, location, and economic conditions. In addition, the rapid advance of global digital transformation has impacted businesses and commerce suggesting that alternative methods for addressing human, business, and social needs are now possible.
Institutional programs promoting education, including primary and secondary programs, need to clearly define the programmatic and financial goals by which they will consider development or expansion of distance and e-learning opportunities (Platt, 2001). Given similar needs and characteristics, the following examples provide a foundation from which to consider an appropriate delivery:

1. The workforce is widely or remotely dispersed, making it expensive in time and money for instructors to travel to the learners;
2. Some information and skills can be taught in a day or less making travel less cost effective for both the learner or the instructor;
3. Instruction using distance and e-learning strategies can be designed to allow learners at all levels to merge instruction with their lifestyles. Learners can read print, view video, or work on computer-based instruction and still meet their other responsibilities;
4. Instruction using distance and e-learning strategies can be designed to allow learners to progress at their own rates; they can focus and reflect upon the information learned;
5. When the primary purpose is to provide information, a distance and e-learning strategy can be used to provide the same information simultaneously, and on a wide-area network; and

Due to ever-increasing competition from other programs and countries, decisions to develop distance and e-learning programs stem from a need for cultural considerations and values. Investing in education, opening up to new technologies through foreign trade and investment, and encouraging private sector research and development (R&D) are the keys to unlocking the potential of technology to speed up economic growth in Asia.

In South East Asia, educational commentators are increasingly promoting the use of educational technology as a way of enhancing the creativity and inventiveness of students. In Singapore and Malaysia, these personal qualities are seen as essential to future national economic development. In these countries there is a clear vision of an emergent form of educational delivery that is challenging existing educational traditions.
The Singaporean government’s Masterplan for IT in Education sets out a strategy of using educational technology to encourage self-directed learning. From the highest levels of government there is an explicit strategy of encouraging students ‘to engage in more active and independent learning’. This policy has begun to have an effect on tertiary education in recent years, with Singapore’s leading universities stating that they will encourage creativity and thinking skills in the curriculum and move away from a heavy reliance on written examinations as the sole form of assessment (Tan, 1999). The workplace of tomorrow will require employees with multiple skills, who are able to think creatively, to solve problems in novel situations. (Gan, 2000)

The applications of IT in higher education are still based on the old models of teaching. Students continue to read and memorize information. Video-conferencing and certain Web applications still tend to be used primarily for information transmission in a didactic style, no different from the classroom lecture model (Gan, 2000). Despite the resilience of more teacher-centered and rigidly structured approaches, as in Singapore, there is a widely held belief in Malaysia that educational technologies and flexible delivery can and should transform the relationship between learners and teachers. While the Vietnamese government has not been so vocal about innovation and creativity in education, it has encouraged the growth of more flexible modes of delivery in higher education. In the early 1990s, enrollments in informal and flexibly-delivered courses (including distance education and part-time studies) in Vietnamese higher education institutions rose much faster than enrolments in formal courses (full-time on-campus courses).

It is clear that the Singaporean and Malaysian governments and many educationists in these countries see educational technologies as a means to encourage greater self-direction and creativity on the part of students. Flexible learning is not seen as a foreign concept that threatens local educational traditions; nor is it seen as simply good teaching. The appeal of educational technologies is that they will require learners to be more pro-active and autonomous, and these personality traits are increasingly important in the ‘knowledge economy’. Technology is not as extensively used in Vietnamese higher education and, as a consequence, discussions concerning the implications of using educational technologies for teaching are not yet on the agenda. In light of this discussion of local policies for the introduction of educational technologies and the desired direction of change of educational leaders, we can see that educational exporters who
seek to introduce similar approaches are not necessarily acting counter to the wishes of
governments, but rather they act alongside local reformist educators as agents of change.

Planning for Technologies

To be able to plan, decide on and implement technologies for education, it is important to be
guided by basic principles and factors for consideration. Perhaps the first question to ask is the
reason why new technologies are being brought into the picture. Below are some guidelines
related to planning and decision-making in technology usage in education and in e-learning
particularly.

1. **Determine what technologies are available and acceptable to a target audience.**
2. **Identify Local and national constraints.** Attention should focus on the geographical,
 regulatory and economic constraints that define access.
3. **Apply the ICT to the Curriculum.** Decisions concerning the curricula should not be
governed by the technology.
4. **Design and be accountable for the rationale for using technologies.** The print-based
 medium is presumably the cheapest, but there could be solid social and educational
 arguments (e.g. improved quality of learning) for moving away from it.

The process for determining the design and incorporation of ICT should be based upon an
established foundation of education and sound decision making. Guidelines should include:

- **Educational policy.** Educational choices have to be based upon objectives,
 methodologies, and roles for teachers and students before decisions can be made
 about the appropriate technologies.

- **Pedagogical Approach.** The challenge is to move from passive to active ways of
 teaching/learning and to shift from systems of teaching and supervision of learning to
 systems of learning and facilitation of learning. Teaching/learning strategies arranged
 in the order of least to most active are: presentation, demonstration, drill and practice,
 interactive and collaborative.
• **Infrastructure.** The whole prerequisite of hardware infrastructure needs to be in place with the supporting elements, such as electricity, maintenance, and technical services as well as human resources.

• **Content.** Where will the content come from? The guideline is to: acquire, as is, when suitable and cost-effective; acquire and adapt when not exactly suitable but cost effective; and create when no suitable or cost-effective materials are available.

• **Committed and trained personnel.** People involved in integrating technologies into the teaching/learning process have to be convinced of the value of the technologies, comfortable with them, and skilled in using them.

• **Financial resources.** It is important to plan and budget for the total cost of ownership including these elements:
 - acquisition of hardware and software;
 - installation and configuration;
 - connectivity;
 - maintenance;
 - support, including supplies, utilities, and computer training;
 - retrofitting of physical facilities; and
 - replacement costs (in five to seven years).

• **Integration.** The success of ICTs in education depends on how they are introduced into the system.

ICTs may be used as an additional layer of educational input, which leaves the current system intact but adds hardware and software for enrichment ICTs may be treated as an integral part of the existing instructional system, thus ICTs are not a substitute for the classroom setting; rather, they enhance the role of the teacher as a facilitator and the role of the student as a learner. ICTs may be introduced through a parallel system such as distance education or e-learning. This option may be used in situations where school availability or access are limited.

To obtain a clearer picture of the E-readiness for ICT, a more detailed country analysis is needed to assess variables such as connectivity, e-leadership, information security, human capital, and e-business climate. The results of the assessment will provide relevant and reliable information and data to assess the current status; identify the gaps and weaknesses of the existing...
infrastructure, policies, regulations, standards, human resources, and the actual use of ICT. Based on the results of the country analysis, a national ICT development action plan can be developed and/or strengthened as a part of the country strategy and program. The results of the e-readiness assessment should also provide a basis for improving social and institutional frameworks, as well as work routines developed before the advent of ICT. In harnessing ICT, a change in mind-set and work culture, including operational business processes, may be necessary to reap full ICT benefits. Active utilization of ICT by the public sector and the promotion of on-line service delivery, which are essential to ensure improved citizens’ access to government, is encouraged.

The private sector plays a lead role in the development of information and communications networks in the information society. A review of what private firms and ICT industries (i.e., local, national, regional, and global private sectors) are doing, domestically and regionally in the Asia and Pacific region, should help identify potential strategic public-private sector partnerships to be developed. In more advanced countries of the region, ICT development is spearheaded by the private sector; the public sector complements private sector initiatives by focusing on policy and human resources development. However, in many developing countries, especially the least developed, the private sector can be reluctant to invest in ICT and should be encouraged with adequate lending and/or guarantee instruments to actively participate in ICT development, especially in rural areas where business opportunities might exist but where business is considered at risk.

Some ICT applications are well suited to help protect natural resources and support land use planning, distance learning to support education and skills building in remote rural areas, and telemedicine to support health care in rural areas. Other applications can include, for example, creation and management of information sources and location tools (factual, statistical, and bibliographic databases; directories; and experts’ addresses). Information content for strategic program areas, e.g., poverty reduction, governance, and law and development should be developed as multimedia messages, content for web pages, press releases, video presentations, and other forms of packaging information and data used in radio and television broadcasts. It also includes messages and technical presentations in conferences and meetings, and discussions with target groups in rural areas

Improvements in human and social capital by increasing connectivity and outreach between people and communities that result from carefully targeted ICT development-oriented
interventions are important elements of inclusive social development. ICT should be applied for more effective use and timely delivery of required information and data by including well-designed ICT development interventions. ICT can also be used to develop greater social content and clearer poverty reduction focus, improve the bottom-up and horizontal focus of communication, and integrate or combine old and new ICTs to ensure global information flow to the poor.

Simultaneously, E-government initiatives should include programs for fostering ICT-literacy and lifelong learning. The programs will aim to enable every citizen to be adept at using ICT to reap the benefits of an enhanced E-lifestyle. The benefits of e-government and Internet for the poor who live in isolated and remote areas without access to electricity, telephone, Internet, or ICT facilities could be questioned. Nevertheless, for villages without those basic facilities, appropriate technologies are available, e.g., solar energy for electricity, and satellite linkups for multimedia data access. Clustering villages around strategic Internet/networks access points is a cost-effective way of providing connectivity and access at affordable cost. Community linkages to government-run educational and information sites will be useful for providing access to information on public sector operations, e.g., job opportunities, business expertise, microcredit.

Quality Assurances

In order for ICT and e-learning programs to be effective, instructional design and needs of students must be incorporated into development of the course. The program provides students with clear, complete, and timely information on the curriculum, course and degree requirements, nature of faculty/student interaction, assumptions about technological competence and skills, technical equipment requirements, availability of academic support services and financial aid resources, and costs and payment policies. Each program of study results in learning outcomes appropriate to the rigor of the degree or certificate awarded. The program provides for appropriate real-time or delayed interaction between faculty and students and among students. Qualified faculty provides appropriate oversight of the program electronically offered. Throughout the duration of the course/program, students have access to technical assistance, including detailed instructions regarding the medium used, practice sessions prior to the beginning of the course, and convenient access to technical support staff. The following
guidelines can be used to assist in the planning, implementation, and evaluation of distance and e-learning programs.

1.0: Distance and e-learning programs organize learning activities around and assess learner progress by reference to these outcomes. When possible, individual learners help shape the learning outcomes and how they are achieved. Intended learning outcomes are described in observable, measurable, and achievable terms. The learning design is consistent with and shaped to achieve the intended learning outcomes. Distance education media and delivery systems are used in a way that facilitates the achievement of intended learning outcomes. Learning outcomes are assessed in a way relevant to the content, the learner’s situation, and the distance education delivery system. Assessment of learning is timely, appropriate, and responsive to the needs of the learner. Intended learning outcomes are reviewed regularly to ensure their clarity, utility, and appropriateness for the learners.

2.0: Distance and e-learning initiatives must be backed by an organizational commitment to quality and effectiveness in all aspects of the learning environment. Involvement in distance learning is consistent with the overall mission of the provider; policies regarding distance learning are integrated into the provider’s overall policy framework. The providing organization makes a financial and administrative commitment to maintain distance learning programs through completion and to support faculty and learner services needed to ensure an effective learning environment. Administrative and support systems (registration, advising, assessment, etc.) are compatible with the learning delivery system to ensure a coherent learning environment. The organization’s curricular and administrative policies incorporate the needs of distance learning as well as traditional learning activities. The provider makes a commitment to research and development of distance learning, by maintaining a systematic evaluation of the content, processes, and support systems involved in its distance learning activities. The provider makes a concomitant investment of resources and effort in professional development and support of both faculty and staff involved in distance learning. The providing organization recognizes effective participation in distance learning through its promotion and reward system for faculty and staff and ensures that its policies regarding promotion, tenure (if applicable), and departmental/program funding reflect the integration of distance learning into the organization’s mission.
The policies, management practices, learning design processes, and operational procedures for distance learning are regularly evaluated to ensure effectiveness and currency. The provider does not distinguish between learning accomplished at a distance and learning accomplished through other means in recognizing learner achievement.

3.0: *Distance e-learning opportunities are effectively supported for learners through fully accessible modes of delivery and resources.* The providing organization has a learner support system to assist the learner in effectively using the resources provided. This system includes technology and technical support, site facilitation, library and information services, advising, counseling, and problem-solving assistance. The provider considers the needs for learner support in relation to the distance learning mode(s) used and makes provision for delivery of appropriate resources based on the design of the learning activities, the technology involved, and the needs of the learner.

Access to support services—such as scheduling, registration, and record keeping—is convenient, efficient, and responsive to diverse learners as well as consistent with other elements of the delivery system. Support systems are accessible to and usable by the learners and are sufficiently flexible to accommodate different learning styles. The provider discloses to the learner all information pertinent to the learning opportunity—such as course pre-requisites, modes of study, evaluation criteria, and technical needs—and provides some form of orientation for those desiring it. Support systems for each learning opportunity are reviewed regularly to ensure their currency and effectiveness.

4.0: *Distance learning activities are designed to fit the specific context for learning the nature of the subject matter, intended learning outcomes, needs and goals of the learner, the learner’s environment, and the instructional technologies and methods.* Learning opportunities include a clear statement of intended learning outcomes, learning content that is appropriate to these outcomes, clear expectations of learner activities, flexible opportunities for interaction, and assessment methods appropriate to the activities and technologies. Elements of a learning event—the learning content, instructional methods, technologies, and context—complement each other.

The selection and application of technologies for a specific learning opportunity are appropriate for the intended learning outcomes, subject matter content, relevant characteristics and circumstances of the learner, and cost range. Learning activities and modes of assessment
are responsive to the learning needs of individual learners. The learning experience is organized to increase learner control over the time, place, and pace of instruction. Learning outcomes address both content mastery and increased learning skills. Individuals with specialized skills in content, instructional methods, or technology, work collaboratively as a design team to create learning opportunities. The learning design is regularly evaluated for effectiveness, with findings used as a basis for improvement.

5.0: The provider has a plan and infrastructure for using technology that supports its learning goals and activities. The technology plan defines the technical requirements and compatibility needed to support the learning activity. The technology plan addresses system security to ensure the integrity and validity of information shared in the learning activities. The technology facilitates interactivity among all elements of a learning environment and places a high value on ease of use by learners. The technology selected for distance learning is fully accessible and understandable to learners and has the power necessary to support its intended use.

Providers communicate the purpose of the technologies used for learning and, through training, assist learners, faculty, and staff to understand its etiquette, acquire the knowledge and skills to manipulate and interact with it, and understand the objectives and outcomes that the technologies are intended to support. The technology infrastructure meets the needs of both learners and learning facilitators for presenting information, interacting within the learning community, and gaining access to learning resources (WICHE, 2001).

Summary

In conclusion, the development and design of appropriate e-learning programs require understanding of the student population to be served as well as an adherence to quality assurance standards that form the foundation for meeting academic and program objectives. Distance and e-learning courses cannot be exactly transformed from a campus-based program. Due to characteristics of the student, a specific order of academic requirements needs to be implemented to ensure course completion. Without the benefit of a lead instructor in a synchronous setting, students may not have the motivation and or the desire to complete the activities. This is clearly seen in Open University programs that graduate less than 50% of the student initially enrolled. Therefore programs and instructional designers may use the following points in the development
of effective and distance and e-learning programs. Establish reliable and valid performance measurements for distance learning; Require providers to substantiate evidence of contact between faculty and students; Require evidence of effective instructional techniques.

Promote systematic efforts for selecting and training faculty; assure the availability of learning resources; Promote ongoing monitoring and enhancement of the technology infrastructure of institutions; Focus attention on the development of courseware and the availability of information. Distant students may be afraid of their ability to do well in a course. They are balancing many responsibilities including employment and families. Often their involvement in distance education is unknown to those they work with and ignored by family members.

Student performance is enhanced if learners set aside time for their instructional activities and if they receive family support in their academic endeavors. The instructor can maintain student self-esteem by providing timely feedback. It is critical for teachers to respond to students’ questions, assignments, and concerns in a personalized and pleasant manner, using appropriate technology such as fax, phone, or computer. Informative comments that elaborate on the individual student’s performance and suggest areas for improvement are especially helpful.

Students often learn most effectively when they have the opportunity to interact with other students. Interaction among students typically leads to group problem solving. When students are unable to meet together, appropriate interactive technology such as E-mail should be provided to encourage small group and individual communication. Assignments in which students work together and then report back or present to the class as a whole, encourage student-to-student interaction. Ensure clear directions and realistic goals for group assignments. Distant students need to reflect on what they are learning. They need to examine the existing knowledge frameworks in their heads and how these are being added to or changed by incoming information.

Examinations, papers, and class presentations provide opportunities for student and teacher to evaluate learning. However, less formal methods of evaluation will also help the students and teacher to understand learning. For example, periodically during the course the instructor can ask students to write a brief reflection on what they have learned and then provide an opportunity for them to share their insights with other class members.
“Many older distance learners may find it difficult to accept that their own experience and reflections are legitimate knowledge.

If the instructor takes a facilitative rather than authoritative role, students will see their own experience as valuable and important to their further learning. Burge (1999) suggests having learners use first-person language to help them claim ownership of personal values, experiences, and insights. Although this is counter to traditional Asian culture, the “hidden” world of e-learning may help students to ask questions and be more inquiring in their learning. Student learning is enhanced when content is related to examples. Instructors tend to teach using examples that were used when they received their training. For distance learning to be effective, however, instructors must discover examples that are relevant to their distant students. Encourage students to find or develop examples that are relevant to them or their community. The Internet opens many opportunities for students and instructors to address real world examples for their lesson. Maximize the use of resources available on the www.
References

15. Greenwood Publishing Group, Inc:

27. Jegede, O. & Shive, G. (Eds.) (2001). Open and Distance Learning in the Asia pacific region. Hong Kong: Open University of Hong Kong Press

